블로그

TEXTNET 팀 문화, 관련 프로젝트 소식 및 데이터 기획 인사이트를 전합니다.
데이터 라벨링 알바가 3년차 경력직이 되기까지
팀 문화

데이터 라벨링 알바가 3년차 경력직이 되기까지

*이 글은 TEXTNET 소속 데이터 구축 작업자 ‘크루’의 시점에서 작성한 가상의 콘텐츠입니다. 저는 현재 3년차 직장인입니다. 지금 다니고 있는 회사는 TEXTNET이라는 곳이에요. 이곳에 입사하기 전의 저는 ‘섞어찌개’ 같은 이력서를 가지고 있었어요. ‘국어’와 ‘교육’이라는 저의 전공을 살릴 수 있는 직장이 너무 적어 공부한 것과는 전혀 다른 일들을 전전해야
16 min read
LLM 평가 지표: 최선의 LLM 성능 평가 방법은 무엇일까?
인사이트 Featured

LLM 평가 지표: 최선의 LLM 성능 평가 방법은 무엇일까?

기존 시나리오 기반의 챗봇이 LLM 챗봇으로 대체되면서, 이제 챗봇은 사용자의 질문을 이해하고 더 자연스러운 답변을 생성해 내기 시작했습니다. 답변의 자율성이 확대됨에 따라 할루시네이션, AI 윤리 등의 문제가 대두되고 있으며 이를 보완하면서도 더욱 사람처럼 답변하는 LLM을 만들기 위한 연구들이 계속 진행되고 있습니다. 더불어 LLM을 평가하는 평가 지표에 대한 연구도 활발하게 이루어지고
19 min read
자연어 데이터 구축, 초반 작업이 가장 중요한 이유(사전 체크리스트 포함)
인사이트

자연어 데이터 구축, 초반 작업이 가장 중요한 이유(사전 체크리스트 포함)

학습데이터는 도메인, 사용자, 서비스 형태, 목적에 따라 설계가 다르고 최종 결과물이 달라집니다. 자연어 데이터의 경우 모호하고 복잡하기 때문에 더더욱 그러한데요. 데이터 구축을 의뢰해 결과물을 받았는데, 처음에 생각했던 것과 너무 달라서 당황했던 경험이 있다는 이야기를 많이 듣습니다. 이전에 데이터 수요처 담당자로서 발주를 해 봤던 저도 크게 공감하는 부분입니다. 데이터 수요처, 데이터
14 min read
챗봇 기획, 답변 중심 설계로 정확도 높이는 법
인사이트

챗봇 기획, 답변 중심 설계로 정확도 높이는 법

챗봇 기획, 무엇부터 시작해야 할까요? 서비스 및 업무 효율 향상, 운영 비용 절감 등을 위해 개인 사업자부터 대기업까지 많은 기업에서 AI 챗봇을 도입하고 있는데요. 챗봇은 다양한 영역에서 활용될 수 있는 유연성을 가진 도구이지만, 영역에 맞는 세밀한 기획이 필요한 도구이기도 합니다. 기획이 세밀하지 않은 챗봇은 브랜드 이미지에 부정적인 영향을 미치며, 업무
12 min read
LLM 챗봇: 초거대 언어모델 기반 챗봇과 기존 챗봇 비교
인사이트

LLM 챗봇: 초거대 언어모델 기반 챗봇과 기존 챗봇 비교

작년 OpenAI사의 ChatGPT가 첨단의 AI 기술로 전 세계에서 관심을 받았습니다. ChatGPT는 채팅이라는 직관적인 UI를 바탕으로 그 어느 AI보다 자연스럽고 똑똑한 언변을 보여줬습니다. 그렇다면 LLM(Large Language Model) 챗봇과 기존 챗봇의 주요 차이점은 무엇일까요? LLM만으로 챗봇을 만들 수는 없을까요? 만든다면 어떤 장단점이 있을까요? 이를 알기 위해서는 챗봇이 작동하는 방식부터 살펴봐야 합니다.
12 min read
프롬프트 엔지니어링으로 ChatGPT 능력 200% 끌어내기
인사이트

프롬프트 엔지니어링으로 ChatGPT 능력 200% 끌어내기

글쓰기에 대한 고민이 있으신가요? 창작의 고통으로 인해 어려움을 겪고 계시진 않나요? 독후감, 리포트, 보고서, 기획안, 이메일, 메시지, 편지 쓰기… 우리는 살면서 글을 써야 하는 수많은 상황에 놓이게 됩니다. 그럴 때마다 대부분의 사람들은 고뇌의 순간을 경험하곤 하죠. 그런데, ChatGPT를 통해 글쓰기 고민을 해소할 수 있다는 사실, 알고 계시나요? TEXTNET이 자체 연구를
17 min read
HCLT 2023(한글 및 한국어 정보처리 학술대회 2023) Review
R&D

HCLT 2023(한글 및 한국어 정보처리 학술대회 2023) Review by TEXTNET

NLP 스타트업에 연구조직이? 국내 유일 텍스트 전문 데이터 설계/구축 서비스 TEXTNET에 연구조직이 있다는 사실, 알고 계시나요? NLP 분야의 연구조직이라 하면 왠지 유수 대기업에나 있을 것 같지만, TEXTNET은 고품질 텍스트 데이터로 AI와 챗봇의 발전을 도모하고자 하는 기업인 만큼 데이터 설계 관련 R&D에 주력하는 팀이 별도로 구성되어 있답니다! 심지어
19 min read
챗봇 구축 시 ChatGPT 활용의 한계와 장점
인사이트

챗봇 구축 시 ChatGPT 활용의 한계와 장점

AI 학습용 데이터와 챗봇 구축 사업을 전문으로 하다 보니 종종 위와 같은 질문을 받게 됩니다. 결론부터 말하자면 ‘아직은 한계점이 분명하나 결국 시간문제다’라고 할 수 있을 것 같습니다. 좀 더 자세히 살펴볼까요? 챗봇은 기본적으로 사용자 의도 분석이 핵심이라 사용자 발화를 사전에 정의된 인텐트에 얼마나 정확하게 매칭하느냐가 관건입니다. 이를 위해 크게
11 min read
채용 공고부터 입사까지, 긍정적인 직원 경험 디자인하기
팀 문화

채용 공고부터 입사까지, 긍정적인 직원 경험 디자인하기

인재 전쟁의 시대 안녕하세요! TEXTNET에서 인사 업무를 총괄하고 있는 인사팀장 김영길입니다. 오랜 기간 여러 회사에서 인사 업무를 수행했지만 최근 ‘우수 인재의 영입과 유출 방지가 이렇게까지 어렵고 힘든 시기가 있었나?’하는 생각이 자주 듭니다. 😭 기업 시장은 바야흐로 인재 전쟁의 시대입니다. 과거에도 인재는 중요했고, ‘언제 인재 전쟁이 없었던 적이 있었나?’라고 생각할
14 min read
피그마 기본 사용법: 데이터 구축 기업은 피그마를 어떻게 쓸까
인사이트

피그마 기본 사용법: 데이터 구축 기업은 피그마를 어떻게 쓸까

안녕하세요. TEXTNET 개발팀 프론트엔드 개발자 이승헌입니다. 데이터 구축 기업의 개발팀은 무슨 일을 하는지, 궁금하지 않으신가요? TEXTNET의 개발팀의 주된 업무는 사내 작업 툴 개발 그리고 개발과 관련된 업무 지원입니다. 데이터 구축 작업자인 크루 관리 툴, 챗봇을 위한 데이터 자동 생성 툴 등을 개발하여 운영하고 있어요. 최근에는 데이터 구축 프로젝트와 관련된 데이터를
9 min read
챗봇 도입하는 방법, 가장 쉽게 알려드려요
인사이트

챗봇 도입하는 방법, 가장 쉽게 알려드려요

챗봇을 도입해야 하는 이유 디지털 기술과 인공지능의 발전으로 인해 비즈니스 환경은 빠르게 변화하고 있습니다. 특히 GPT(Generative Pre-trained Transformer)와 같은 대규모 언어 모델의 등장을 기점으로 챗봇 기술에 상당한 변화가 있었습니다. 이전에 비해 챗봇은 더욱 자연스러운 대화와 개인화된 경험을 제공할 수 있게 되었습니다. 규칙 기반 시스템이나 간단한 통계 모델을 기반으로
15 min read
AI에게 창의성을 부여하는 방법 - 추론 능력 향상을 중심으로
인사이트

AI에게 창의성을 부여하는 방법 - 추론 능력 향상을 중심으로

누구나 GPT를 찾는 세상, 추론하는 LLM을 향해 “누나, 먼저 GPT한테 물어봐. 그게 제일 빨라.” 대학생인 동생이 과제를 하는 모습은 몇 년 전과 비추어봤을 때 사뭇 생경합니다. 학교 도서관 홈페이지나 논문 사이트를 뒤적여보던 과거 저의 모습과는 달리 동생은 ChatGPT에게 먼저 물어보고는 합니다. 동생의 모습을 통해 저는 새삼 LLM(Large language model)
13 min read
TEXTNET, 국내 최대 자연어처리 학회 HCLT 2년 연속 논문 채택
뉴스 Featured

TEXTNET, 국내 최대 자연어처리 학회 HCLT 2년 연속 논문 채택

국내 유일 텍스트 데이터 전문 설계/구축 서비스 TEXTNET이 작년에 이어 ‘2023 한글 및 한국어 정보처리 학술대회(HCLT 2023)’ 논문 채택 성과를 달성했습니다! 올해로 35회를 맞이한 ‘한글 및 한국어 정보처리 학술대회’는 한국정보과학회, 언어공학연구회, 한국인지과학회가 주최하는 권위 있는 학술대회입니다. 인공지능 기반 한국어 처리 기술 개발과 연구 성과를 공유하는 주요 학회
7 min read
프리랜서가 다시 정규직을 결심한 이유: 데이터 구축 작업자의 TEXTNET 입사기
팀 문화

프리랜서가 다시 정규직을 결심한 이유: 데이터 구축 작업자의 TEXTNET 입사기

TEXTNET은 ‘인간과 AI가 서로 이롭게 공존하는 세상’이라는 미션을 바탕으로 사용자의 몰입을 만드는 데이터, 모델 구현을 위한 최적의 데이터를 만드는 일을 합니다. 프로젝트에 따라 데이터 구축 작업에 외부 작업자의 손길이 필요한 경우가 있는데요. 데이터 구축 작업자, 크라우드워커, 프리랜서 작업자 등 다양한 명칭으로 불리는 작업자를 TEXTNET에서는 ‘크루’라고 부르고 있어요. 👉🏻[관련
12 min read
TEXTNET, 국제한국언어학회 ICKL 2023 논문 채택
뉴스 Featured

TEXTNET, 국제한국언어학회 ICKL 2023 논문 채택

국제한국언어학회 ICKL 2023에 TEXTNET의 논문이 채택되었습니다! ICKL(International Circle of Korean Linguistics)은 1975년에 설립된 한국어 언어학 전문 학회로, 2년마다 국제 학술대회를 개최하고 있습니다. ICKL은 한국어와 언어학을 주제로 전 세계의 지식과 정보를 교류하는 권위 있는 학회로서, 역사적으로도 유서 깊은 학회입니다. ICKL의 저널 'Korean Linguistics'는 Linguistics 분야에서 Q2급의
6 min read
진짜 사람처럼 말하는 챗봇을 만드는 사람들 - [직무 인터뷰 #3] 챗봇사업팀 팀장
팀 문화

진짜 사람처럼 말하는 챗봇을 만드는 사람들 - [직무 인터뷰 #3] 챗봇사업팀 팀장

들어가며 TEXTNET은 '인간과 AI가 서로 이롭게 공존하는 세상'이라는 미션을 바탕으로 사용자의 몰입을 만드는 데이터, 모델 구현을 위한 최적의 데이터를 만드는 일에 주력하고 있습니다. 특히 챗봇, 콜봇 등 대화형 AI의 사용자 만족도를 높이는 데 강점을 가지고 있는데요. 이는 언어학은 물론 심리학, 문예창작학, 전산언어학 등 관련 전문성을 갖춘 TEXTNET
9 min read
데이터 기획자에게 필요한 역량은? - [직무 인터뷰#2] 데이터사업팀 선임
팀 문화

데이터 기획자에게 필요한 역량은? - [직무 인터뷰#2] 데이터사업팀 선임

들어가며 TEXTNET은 '인간과 AI가 서로 이롭게 공존하는 세상'이라는 미션을 바탕으로 사용자의 몰입을 만드는 데이터, 모델 구현을 위한 최적의 데이터를 만드는 일에 주력하고 있습니다. 고객사의 모델에 맞는 데이터를 어떻게 하면 더 정확하게, 효율적으로 만들 수 있을지 고민하는 '데이터 기획'이 TEXTNET PM의 역할인데요. 오늘 소개할 분은
5 min read
서로 다른 팀원들을 아우르는 힘 - [직무 인터뷰 #1] 데이터사업팀 팀장
팀 문화

서로 다른 팀원들을 아우르는 힘 - [직무 인터뷰 #1] 데이터사업팀 팀장

들어가며 TEXTNET은 '인간과 AI가 서로 이롭게 공존하는 세상'이라는 미션을 바탕으로 사용자의 몰입을 만드는 데이터, 모델 구현을 위한 최적의 데이터를 만드는 일에 주력하고 있습니다. 다양한 도메인과 목적을 가진 AI 서비스를 위한 맞춤형 데이터, 더 정확하고 품질이 높은 데이터 구축을 위한 기획에 몰두하는 TEXTNET의 핵심 인력은 PM이라고 할 수
7 min read
TEXTNET, 국내 최대 자연어처리 학회 HCLT2022에 논문 채택
뉴스

TEXTNET, 국내 최대 자연어처리 학회 HCLT2022에 논문 채택

인공지능 학습용 텍스트 데이터 구축 및 설계 서비스인 TEXTNET의 논문이 2022 한글 및 한국어 정보처리 학술대회(HCLT2022)에 채택되었습니다! 구두발표로 채택된 TEXNTET의 논문은 ‘성격유형별 문체 특성 기반 맞춤형 광고메시지 자동생성 연구’입니다. 고객의 성격 유형을 구분하고, 이를 바탕으로 문체를 달리하여 고객 성향에 맞춘 광고메시지를 자동 생성해내는 모델을 제안하고 있습니다. 이
4 min read
TEXTNET 데이터 구축 작업자 크루 여러분
팀 문화

크라우드 워커? TEXTNET에선 크루라고 불러주세요!

Good bye 작업자, Hello 크루! 안녕하세요, TEXTNET 마케터 링귄이입니다! 오늘은 TEXTNET의 새로운 시도에 대해 이야기 해 보려고 해요. 궁금하시죠? TEXTNET은 프로젝트를 기반으로 업무가 진행되어요. 때문에 프로젝트가 생길 때마다 함께 일할 ‘작업자’를 채용하곤 했답니다. 하지만 어쩐지 사무적으로만 느껴지고, 업무를 시키는 입장으로만 함께 하게 되는 것 같았어요. 거기다 코로나 때문에 한
10 min read
기술적 접근에 기획적 접근을 더하다, Tag box
R&D

대화형 AI, 기술적 접근에 기획적 접근을 더하다! Tag box란?

인간의 대화는 일정하지 않고, 조합 가능한 수도 무한대입니다. 대화의 흐름과 방향이 어디로 향하는 지 예측할 수 없기 때문에 설계 난도가 높은 편입니다. 거기다 상업적으로 활용될 경우에는 더 높은 수준의 설계가 선행되어야 합니다. ‘상업적으로 유의미한 연속대화 구현’을 위해, TEXTNET은 기술적 접근 뿐만 아니라 대화를 구성하고 조절하는 기획적(Rule-base)인 접근도
5 min read
대화 데이터 구축 과정
인사이트

대화 데이터가 만들어지는 과정

인공지능 학습 데이터는 상당 부분 ‘대화’의 형태를 띄고 있습니다. 고객이 발화 주체인 대화 데이터이거나, 디지털 휴먼의 경우 엔진이 먼저 대화를 시작하기도 하죠. 그런데 이런 대화 데이터는 어떤 과정으로 만들어질까요? 대화 데이터를 구축하는 과정에서 언어 전문성이 필수적인 이유는 무엇일까요? TEXTNET이 신규 고객사와 소통을 시작한다는 가정 아래, 과정을 하나하나 짚어볼까 합니다.
7 min read